by Scientific American - december 2009 - Dr Alexander S Bradley.


The initial report describing the discovery, published in the journal Nature in July 2001, sent waves of excitement throughout the scientific community. Lead author University of Washington geologist Deborah S. Kelley and her colleagues raised many fundamental questions. How did this hydrothermal field form? What kinds of organisms live there, and how do they survive? In 2003 Kelley led a full-scale, six-week expedition to Lost City to find out. After years of painstakingly analyzing the samples collected during that mission, specialists are now beginning to compose fascinating answers.
The findings from Lost City have prompted reconsideration of long-standing notions about the chemistry that may have set the stage for the emergence of life on Earth.
The results have expanded researchers’ ideas about where life beyond the Blue Planet might exist—and challenged established ideas about how to search for it. Chemistry Scientists have known about undersea hydrothermal vents since the 1970s. The black smoker systems are the most familiar; they occur at mid ocean ridges—those strings of volcanoes overlying spots where tectonic plates are pulling away from one another. The water at these vents can reach temperatures above 400 degrees Celsius because of their proximity to molten rock. With a pH similar to lemon juice, the scorching water leaches sulfide, iron, copper and zinc as it filters through the volcanic rocks below the sea floor. As this hot, acidic fluid then rises back to the surface of the sea floor, it is discharged through the vents into cold seawater, where the dissolved metal sulphide quickly cool and precipitate out of the fluid, producing a cloudy mix that looks like billowing black smoke. These metal sulphides accumulate into ever taller chimneys atop the vents. Despite their hostile chemistry, the areas surrounding these vents teem with exotic animals, such as giant, red-tipped Riftia tube worms, which lack both mouths and guts but thrive by a symbiotic association with internal bacteria that consume poisonous hydrogen sulphide gas emanating from the vents.



The mantle consists mainly of a rock called peridotite, which turns out to be the key to the Lost City’s distinctive chemistry.
When peridotite comes into contact with water, it undergoes a chemical reaction called serpentinization. As seawater seeps into the depths of the massif, the peridotite is altered to serpentinite, and the percolating waters become more alkaline as a result of that reaction. By the time fluids reemerge and mix with the ocean waters, they are loaded with calcium released during serpentinization.
Most significant of all, they are now highly reduced, meaning that all the oxygen has been stripped from the water and replaced with energy-rich gases such as hydrogen, methane and sulfide.
The concentrations of hydrogen, in particular, are among the highest ever encountered in a natural environment. And that is where things begin to get really interesting.
In the Beginning
Hydrogen is full of energy as a consequence of its ability to transfer electrons to other compounds, such as oxygen, releasing energy in the process. Compounds that can readily donate electrons to other compounds are described somewhat confusingly as “chemically reduced.” Scientists have long suspected that reduced gases played an important role in the origin of life on Earth. In the 1920s Russian biochemist Alexander Oparin and British evolutionary biologist J.B.S. Haldane each suggested that the primitive atmosphere of Earth might have been very rich in reduced gases such as methane, ammonia and hydrogen. If the atmosphere had high concentrations of these gases, they proposed, the chemical ingredients required for life might have formed spontaneously. The idea gained credibility several decades later with the famous 1953 experiment by chemists Stanley Miller and Harold Urey of the University of Chicago. By heating and discharging sparks through a mixture of reduced gases, Miller and Urey were able to create a range of organic compounds (most compounds containing carbon and hydrogen), including amino acids, the building blocks of proteins used by all life-forms on Earth. In the years after the Miller-Urey experiment, however, geologists concluded that the early atmosphere was not nearly as reduced as the duo had assumed. The conditions that formed amino acids and other organic compounds in their experiment, these scientists said, probably never existed in the atmosphere. But reduced gases abound in the Lost City hydrothermal vents.


No Sun Needed
Many microorganisms have evolved the ability to consume the abundant energy contained in hydrogen. Methanogens constitute one such group. As their name suggests, methanogens generate methane: the natural gas that many of us use to heat our homes and cook our food. It turns out that up to one third of the microbes at Lost City are methanogens belonging to the family Methanosarcinales. Their presence is not surprising given the abundance of hydrogen in the vent fluids. What is remarkable is that the Lost City methanogens operate independently of the sun. Virtually all life on Earth depends on solar energy—be it humans, who rely on photosynthetic organisms for food, or plants and algae serpentinithat photosynthesize. Even at black smokers, in the darkest depths of the oceans, life depends on the sun. The microbes that support the growth of the giant tube worms, for example, require both sulfide and oxygen. The ultimate source of the oxygen is photosynthetic organisms far above.
In contrast, all that the Lost City methanogens need to survive is carbon dioxide, along with liquid water and peridotite, which react to form the raw ingredients they require. Investigators have found that both geochemical reactions stemming from serpentinization and the activity of biological methanogens contribute methane to the Lost City ecosystem. This simultaneous generation of methane may not be a coincidence. In a series of studies over the past few years, biochemist William Martin of Heinrich- Heine University in Germany and geochemist Michael Russell of the NASA Jet Propulsion Laboratory in Pasadena examined the precise chemical steps required to produce methane abiotically, that is, without living organisms in environments such as that in Lost City. They found that each step is replicated in the biological pathways of organisms that generate methane. From this work, Martin and Russell proposed that on the early Earth, sites like Lost City produced methane geochemically and that primordial lifeforms may have simply co-opted each of the chemical steps for themselves, leading to what might have been the origin of the first biochemical pathway. Martin and Russell are not the first scientists to suggest that life might have arisen at a hydrothermal vent. That idea has been around for a number of years. Support for it comes not only from the advantageous chemistry at hydrothermal systems but also from the evolutionary record found in the genetic material of all living organisms.

The findings from Lost City also bolster hypotheses about where else in our solar system life might exist or have existed in the past. Any planet or moon containing both peridotite and liquid water—the ingredients necessary for serpentinithatzation—could conceivably support life-forms analogous to microbes at Lost City.
Evidence of these components is strongest on Mars and on Jupiter’s moon Europa. Indeed, researchers have already detected methane in the modern Martian atmosphere. Whether it comes from microbes or chemical reactions in the planet’s rocks—or both—remains uncertain, however. That determination may turn out to be harder than scientists had envisioned. Most of the organisms on the tree of life are microbes. Although we can study the DNA and RNA sequences of such organisms, finding a fossil record of small creatures with ambiguous shapes is difficult. To that end, in the past few decades researchers have developed techniques that permit investigation of the evolutionary history of microbes by combing the geologic record not for physical fossils but for chemical ones. Chemical fossils are molecules that can be traced to living organisms and can be preserved as fossils in rocks over millions or even billions of years. Most chemical fossils are derived from the lipids that make up cell membranes. Although lipids do not hold as much information as DNA or a physical fossil does, they are reliable indicators of life and can carry structures diagnostic of the organisms that produced them. Moreover, the carbon that constitutes the lipids is itself informative, because it contains a marker that reveals how an organism extracted carbon from its environment. That marker is carbon 13, a relatively rare form of the element that does not degrade over time. The carbon in most organisms includes between 1 and 3.5 percent less carbon 13 than does the carbon in the carbon dioxide dissolved in seawater. Scientists have thus assumed that carbon in ancient rocks that is depleted by this amount derived from living organisms. And as a corollary to that rule, carbon from ancient rocks that is not depleted comes from abiotic processes. But Lost City puts the lie to that notion. My work with a team of scientists at the Massachusetts Institute of Technology and at Woods Hole has shown that some of the most abundant lipids found in the carbonates at Lost City are from methanogens. Yet these lipids exhibit no carbon 13 depletion whatsoever. Instead their carbon 13 contents are what one would expect from material that did not derive from living organisms. How can this be? The use of carbon 13 as a tracer of life rests on the assumption that more carbon dioxide is available in the environment than can be used. As long as there is a surplus of carbon dioxide, organisms can incorporate lighter carbon 12 molecules, which they prefer, and discriminate against the heavier carbon 13. But if carbon dioxide were somehow scarce, organisms would scrounge for every available carbon molecule that they could get, be it the lighter variety or the heavier one. And if that were to occur, the relative abundance of carbon 13 in the organisms would be no different from that in the environment. The chemical tracer of life would be invisible. This process is exactly what is happening at the Lost City vents. Unlike nearly every other environment on Earth, where carbon dioxide is always available, at Lost City hydrogen predominates and carbon dioxide is scarce, in effect forcing organisms there to extract carbon isotopes indiscriminately. The invisibility problem applies to methane, too. Usually methane produced by organisms shows an extreme depletion in carbon 13, in contrast to methane from geochemical reactions. But in serpentinizing systems, this difference does not always appear. The methane in the Lost City vent waters lacks the telltale carbon 13 depletion. Researchers know from observation that this methane is a mixture of geologic and biological products. Carbon isotopes alone are incapable of making the distinction, though.

No comments:
Post a Comment